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[1] Ozone measurements by various platforms during the International Consortium for
Atmospheric Research on Transport and Transformation (ICARTT) operations in the
summer of 2004 are assimilated into the STEM regional chemical transport model (CTM).
Under the four-dimensional variational data assimilation (4D-Var) framework, the model
forecast (background) error covariance matrix is constructed using both the so-called
NMC (National Meteorological Center, now National Centers for Environmental
Prediction) method and the observational (Hollingworth-Lönnberg) method. The inversion
of the covariance matrix is implemented using truncated singular value decomposition
(TSVD) approach. The TSVD approach is numerically stable even with severely ill
conditioned vertical correlation covariance matrix and large horizontal correlation
distances. Ozone observations by different platforms (aircraft, surface, and ozonesondes)
are first assimilated separately. The impacts of the various measurements are evaluated on
their ability to improve the predictions, defined as the information content of the
observations under the current framework. In the end, all observations are assimilated
into the CTM. The final analysis matches well with observations from all platforms.
Assessed with all the observations throughout the boundary layer and midtroposphere, the
model bias is reduced from 11.3 ppbv for the base case to �1.5 ppbv. A reduction of
10.3 ppbv in root mean square error is also seen. In addition, the potential of improving air
quality forecasts by chemical data assimilation is demonstrated. The effect of assimilating
ozone observations on model predictions of other species is also shown.

Citation: Chai, T., et al. (2007), Four-dimensional data assimilation experiments with International Consortium for Atmospheric

Research on Transport and Transformation ozone measurements, J. Geophys. Res., 112, D12S15, doi:10.1029/2006JD007763.

1. Introduction

[2] Similar to numerical weather predictions (NWPs), an
improvement in air quality analyses and forecasts requires
integration with observations to constrain the model. This is
known as data assimilation. Experiments in NWPs have
shown that advanced data assimilation such as four-
dimensional variational data assimilation (4D-Var) are more

effective than the traditional techniques such as nudging and
Optimal Interpolation (OI). Compared to NWPs, there is
much less experience in chemical data assimilation.
[3] Fisher and Lary [1995] first applied 4D-Var data

assimilation to the analysis of chemically active trace
species using a Lagrangian model. Elbern et al. [1997,
2000], Elbern and Schmidt [1999, 2001], and Hoelzemann
et al. [2001] developed a 4D-Var chemical data assimilation
system using a regional Eulerian model, European Air
pollution Dispersion model (EURAD). Improvements in
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ozone forecasts subsequent to the assimilation procedure
was found [Elbern and Schmidt, 2001]. Using the 4D-Var
approach with the regional CTM STEM-2K1 (Sulfur Trans-
port Eulerian Model, version 2K1) [Daescu and Carmichael,
2003; Carmichael et al., 2003; Sandu et al., 2005], Chai et
al. [2006] showed improvement of analyses by assimilating
flight measurements of various chemical species. In previous
studies, the model error covariance matrices were not
specifically investigated, although it is well known that this
will greatly affect the data assimilation results.
[4] Coordinated measurements were made by the Inter-

national Consortium for Atmospheric Research on Trans-
port and Transformation (ICARTT) consortium during the
2004 study in northeastern United States and the Maritime
Provinces of Canada. These measurements provide invalu-
able information in evaluating and improving air quality
models and model forecasts [Singh et al., 2006]. The rich
set of observations and extensive model studies during
ICARTT make this period well suited for data assimilation
experiments, and an ideal setting, to test the advanced
chemical data assimilation framework, to generate better
analyses using both observations and model results, and to
investigate the potential to improve the future of air quality
forecasts.
[5] In this paper we focus on the use of the ICARTT

ozone measurements from different sources to improve the
predicted ozone distributions. We demonstrate how the
modeling and measurement activities of ICARTT can be
used in the data assimilation framework. We specifically
demonstrate that the model forecast (background) error
covariance matrix can be constructed using the air quality
forecasts during the ICARTT field experiments. Then we
introduce a truncated singular value decomposition regular-
ization (TSVD) technique to implement the error correlation
matrix in the analysis. We also systematically evaluate the

information content of measurements from different plat-
forms by assimilating them separately and comparing the
predictions to withheld observations. A final analysis is
performed with all the observations assimilated into the
regional CTM. The effects of the data assimilation on model
predictions of other species, and on the chemical forecasts
after the data assimilation period are also discussed.
[6] The paper is organized as the following. A brief

description of the STEM model and the variational data
assimilation procedure is given in section 2. Section 3
describes the model setup and the observations to be
assimilated. Section 4 discusses how the model error
covariance is generated and implemented into the current
4D-Var system. Data assimilation experiments are presented
and discussed in section 5. A summary is given in section 6.

2. Method

2.1. STEM

[7] In this study, we employed the STEM-2K3 [Tang et
al., 2004] regional chemical transport model. The STEM-
2K3 model is a flexible regional-scale chemical transport
model using SAPRC99 chemical mechanism [Carter, 2000]
with online photolysis solver [Tang et al., 2003]. Meteoro-
logical inputs to the model came from the fifth-generation
Mesoscale Model (MM5) using the Aviation model (AVN)
during forecasting and NCEP (National Centers for Envi-
ronmental Prediction) FNL (Final Global Data Assimilation
System) analyzed data during postanalysis. During forecast-
ing, the STEM-2K3 was run over three nested domains
subsequently. The first domain covers the continental United
States. A grid with a 60 km horizontal resolution (62 cells in
longitude, and 97 cells in latitude) was used over this domain.
Vertically the model had 21 layers, extending from the
surface to 100 hPa using 0.999, 0.9965, 0.9925, 0.985,
0.97, 0.945, 0.91, 0.87, 0.825, 0.77, 0.71, 0.65, 0.59, 0.53,
0.47, 0.41, 0.35, 0.285, 0.21, 0.125, and 0.04 in sigma
coordinate. The boundary conditions are provided by the
MOZART global chemical model predictions, i.e.,
MOZART GFDL (NOAA GFDL) [Horowitz et al., 2003]
during the forecast, and MOZART NCAR [Pfister et al.,
2005] during postanalysis. MOZARTNCAR assimilated CO
values from MOPITT (Measurements of Pollution in the
Troposphere instrument on board the TERRA satellite). The
Grell cumulus parameterization [Grell et al., 1994] and
the medium-range forecast (MRF) planetary boundary layer
parameterization [Hong and Pan, 1996] were used for the
MM5 runs. The emissions inventory was based on the U.S.
EPA National Emissions Inventory NEI 2001, with updated

Figure 1. Computational grid and AIRNOW stations
(color coded by ozone measurements at 1900 UT on 20 July
2004).

Table 1. Ozone Observations on 20 July 2004

Observations Description

AIRNOW EPA surface stations, hourly averaged data used
DC3 vertical profile of ozone mixing ratio from lidar
MOZ-FN MOZAIC, Frankfurt–New York flight
MOZ-NF MOZAIC, New York–Frankfurt flight
P3 NOAA P3-B measurement
AIRMAP UV SPECTROSCOPY measurement at four sites
DC8-In NASA in situ ozone via nitric oxide chemiluminescence
DC8-Li DC-8 composite tropospheric ozone cross sections
RHODE ozonesonde/radiosonde data from Narragansett, RI
RONBR ozonesonde/radiosonde data from the R/V Ronald H. Brown
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large point source emissions (Gregory Frost at NOAA Earth
Systems Research Laboratory, personal communication).
Upper troposphere lightning NOx emissions were added
to the model based on the National Lightning Detection
Network (NLDN), modulated by signal strength and multi-
plicity of flashes. Further information about the lightning
emissions is given by Tang et al. [2007]. Biogenic emissions
were estimated using Biogenic Emissions Inventory System
2 (BEIS2) which generates time-varied isoprene and mono-
terpene emissions driven by meteorological variables from
MM5. Forest fires that occurred during the ICARTT period
were largely outside the model domain (in Alaska and
Northwestern Canada), therefore their influence was incor-
porated through lateral boundary conditions from MOZART
global chemical model predictions.

2.2. STEM 4D-Var System

[8] The current 4D-Var data assimilation system includes
a regional CTM, i.e., the STEM, its adjoint model, and a
minimization routine. Here we briefly describe the system,
and the readers are referred to Chai et al. [2006] for further
details.
[9] The evolution of the chemical constituent concentra-

tion vector c in time (t) is described as

@c

@t
¼ �u � rcþ 1

r
r � rK � rcð Þ þ 1

r
f þ E ð1Þ

Here we denote by u the wind field vector, r the air density,
K the turbulent diffusivity tensor, f the chemical transforma-
tion rate, and E the rate of elevated emissions.
[10] Theadjointof the tangent linearmodel of theSTEM-2K1

defines the evolution of the adjoint variable vector l, which
reads as

@l
@t

þr � ulð Þ ¼ �r � rK � rl
r

� �
� F � lð Þ � f ð2Þ

In this equation f is a forcing functional vector and will be
defined later. F is a tensor function, obtained by linearizing
the incremental f as df � F � d(rc). As f is a nonlinear
function of (rc), F also varies with (rc), i.e., F = F(rc). This
implies that the forward model must be first solved, the state
c(x,t) saved for all t, then the adjoint model can be
integrated backward in time from T down to t0.
[11] The 4D-Var system seeks the optimal solution which

minimizes the cost functional J, defined as

J ¼ 1

2
c0 � cb½ 
TB�1 c0 � cb½ 
 þ 1

2
y� h cð Þ½ 
TO�1 y� h cð Þ½ 
 ð3Þ

Figure 2. Flight tracks, AIRMAP stations, and ozonesonde locations. RRV: positions of NOAA
research vessel Ronald H. Brown between 1200 UT on 20 July to 1200 UT on 22 July 2004.

Figure 3. Domain-averaged AIRNOW ozone concentra-
tion and standard deviation inside a grid cell on 20 July
2004.
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where B and O are error covariance matrices for a priori
model forecast (background) and observations in discrete
spaces, respectively. h is a projection operator, calculating
the observation vector y = y(x, t) from the model space c =
c(x, t). In the current study the initial concentrations c0 =
c(t = 0) are chosen as the only control parameters to
adjust, though in principal any model parameters including
emissions can be adjusted. Hereafter, the subscript ‘‘0’’ is
used to denote variables at the instant t = 0. Assuming that the
operator h is linear, h(c) can be written as h(c) = H � c. In our

application, H reflects trilinear interpolation in space and
linear interpolation in time when constructing model
counterparts of the observations. It is also represented in
the H transformation matrix.
[12] The forcing term f in equation (2) appears as

f ¼ HT � O�1 � y� H � c½ 
 ð4Þ

The backward integration of equation (2) gives adjoint
variables at any time, which are the sensitivities of the cost
functional with respect to state variables (concentrations), i.e.,

Figure 5. Model error correlation coefficients between
vertical levels, as a function of Dz, the distance between

two levels. The line indicates e
�Dz2

lz2 , where lz = 2500 m.

Figure 7. Correlation coefficients of observational incre-
ments between AIRNOW stations, as a function of the
horizontal distance (Dh) between stations. The distance
increment is 1 km, within which the average correlation of
multiple station pairs is shown. The line shown is Rz e

�Dh1:5

lh
1:5 ,

where lh = 270 km and Rz = 0.6.

Figure 6. Model error correlation coefficients as a function
of horizontal distance Dx or Dy. They can be fitted by

e
�Dh1:5

lh
1:5 , where lh = 270 km.

Figure 4. Model error correlation coefficients between
vertical levels. The nonuniform vertical grid is indicated by
the height of each level, shown as the mesh in the plot.
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dJ ¼ lT � dc ð5Þ

Note that the background part of the cost functional in
equation (3) adds one more term to the gradient of the cost
functional with respect to initial concentrations. Using
equation (3), we have

dJ ¼ lT
0 þ c0 � cbð ÞT � B�1

h i
� dc0 ð6Þ

where l0
T + (c0 � cb)

T �B�1 is the gradient information
needed for the minimization. The optimal initial condition c0
can be found efficiently by applying many different
minimization routines. Quasi-Newton limited memory L-
BFGS [Byrd et al., 1995] is used by most 4D-Var
applications. In this article, an updated version, L-BFGS-B
[Zhu et al., 1997] is used. [Chai et al., 2006] found that
adding bound constraints improved the computation effi-
ciency. For the following data assimilation tests, the
maximum number of iterations is set to be 25 in the
minimization. In each iteration, both the STEM and its
adjoint are run in the 4D-Var data assimilation time window.

3. Experiment Setup and Observations

[13] Figure 1 shows the computational domain for the
following data assimilation experiments. A 60 km grid used

for 4D-Var assimilation is also shown. Note that we
typically use a 12 km resolution for both forecasting and
analysis for this domain when there is no 4D-Var calculation
[Tang et al., 2007]. However, since the typical 25 4D-Var
iterations add about 80 times to the computational time
compared to the STEM forecast run, we focus on a 60 km
grid, which is more representative of the resolutions of
global models. The boundary conditions for this domain
came from the 60 km grid covering the continental U.S. that
was described in section 2.1.
[14] We selected the data assimilation time window to be

12 hours, which is 1200–2400 UT, on 20 July 2004. The
date was chosen because it was a day with a high density of
observations. The time window covers daytime peak ozone
period, as well as the operational time of NOAA P3, NASA
DC-8 flights, and two ozonesondes in the domain. During
this time period there were ozone measurements by two
MOZAIC (Measurements of Ozone and water vapour by
in-service Airbus Aircraft, http://mozaic.aero.obs-mip.fr)
flights [Thouret et al., 1998; Marenco et al., 1998; Nédélec
et al., 2003]. Most of the NOAA DC3 flight was also in the
chosen time window. The ozone measurements during this
period used in the data assimilation experiments are listed
in Table 1. The locations of the AIRNOW measurements
are shown in Figure 1. Figure 2 shows the flight tracks, the
locations of the AIRMAP measurements, and the ozone-
sonde locations.
[15] The CTM time step is 15 min. With operator split-

ting, during each time step, transport in each direction is
processed twice and the chemistry is solved using a Rose-
nbrock method [Sandu et al., 2003; Daescu et al., 2003].
The measurements contain more temporal and spatial var-
iation than the model can resolve at the current resolutions.
For instance, Figure 1 shows that the ozone measurements
from different monitoring sites inside one grid cell can vary
by as much as 30 ppbv. Such variation is called represen-
tative error. In the data assimilation framework, it is

Table 2. Maximum and Minimum Singular Values, Condition

Number, Rank p in TSVD Regularization, and Singular Value sp
of Spatial Correlation Matrices X, Y, and Z

Matrix
Size

(n � n) s1 sn
Condition
Number p sp

X 25 � 25 7.49 2.65 � 10�2 283 14 7.57 � 10�2

Y 22 � 22 7.35 2.65 � 10�2 277 12 8.35 � 10�2

Z 21 � 21 9.97 7.69 � 10�17 1.30 � 1017 8 1.18 � 10�1

Figure 8. Vertical correlation of model errors, (left) Z and (right) Zq. Z is used to approximate the
correlation calculated through the NMC approach, shown in Figure 4. Zq is after TSVD regularization.
The nonuniform vertical grid is indicated by the height of each level, shown as the mesh in the plot.
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necessary to account for the observational errors which
include both the measurement errors and the representative
errors. As the representative error is normally much larger
than the measurement error [Daley, 1991], we choose to
neglect the measurement error and use the standard devia-
tion of ozone measurements within a grid cell as a measure
of the representative error. Figure 3 shows the hourly
domain-averaged AIRNOW ozone measurements and stan-
dard deviations inside a grid cell. It is seen that the standard
deviation varies from a maximum value of �13 ppbv at
night to �5 ppbv during the day. In the following data
assimilation experiments we neglect the diurnal variations
and assume a constant observational error of 8 ppbv. We
also assume O in equation (3) is diagonal, i.e., no correla-
tion between the observational errors. In addition, all the
observations are processed according to the model resolution

by taking the averaged value inside each four-dimensional
grid cell.

4. Model Forecast Error Covariance

4.1. NMC Results

[16] There are several methods to establish the model
forecast error covariance matrices needed in the data assim-
ilation procedure. One method is to use the NMC (National
Meteorological Center, now National Centers for Environ-
mental Prediction) approach [Parrish and Derber, 1992],
which is used in operational data assimilation with NWPs.
During the ICARTT field campaign, 3-day air quality
forecasts using the STEM were initiated everyday. This
resulted in three different forecasts for any specific time.
Following the NMC method approach, model error covari-
ance B in equation (3) can be calculated by substituting the

Figure 9. Wind fields at 1600 UT and 2000 UT, at h = 990 m and 3553 m.
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model errors with the differences between forecasts.
Specifically, we obtainmodel error samples at each point using

�i ¼ c fi � c f ð7Þ

where ‘‘i’’ is used to differentiate different forecasts.
[17] Unless spectral methods are used where the control

variables form diagonal B matrices [Parrish and Derber,
1992], B matrices are often too large to store because of the
correlation between model forecast errors. For instance, if
only initial ozone concentrations are chosen as control
parameters to be adjusted, the number of control variables
is Nx � Ny � Nz = 25 � 22 � 21 = 11,550. This will result
in a 11,550 � 11,550 B matrix that has 133,402,500
components. Not only the direct inverse of a large matrix
is extremely expensive, the often rank-deficient B makes the
inverse numerically unstable. Courtier [1997] and Lorenc
[1997] proposed to change the control variables by precon-
ditioning in order to avoid the direct inversion. Recently
multidimensional recursive filters have been used to model
error correlations [Gao et al., 2004; Purser et al., 2003a,
2003b]. However, it is difficult to apply the method to
nonuniform grids such as the vertical grid used in the
STEM, or complicated non-Gaussian covariances. Here
we use singular value decomposition (SVD) that directly
implement the covariances calculated from the NMC
approach. To avoid storing the error covariance matrix
explicitly, we assume B can be written as

B ¼ X � Y � Z � C ð8Þ

where X, Y, and Z are matrices of sizes Nx � Nx, Ny � Ny,
and Nz � Nz and they represent the error correlation in three
different directions. C is the error covariance matrix at a
single grid point that represents both the error variances and
correlation between different species. For the current case,
C, as a scalar, is the background error variance for ozone
only. � denotes the Kronecker product [Horn and Johnson,
1991].
[18] The correlation coefficients are then calculated in

three different directions. For instance, the model error
correlation coefficients between two vertical levels are
calculated as

R k1; k2ð Þ ¼ �k1�k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k1�k1 � �k2�k2

p ð9Þ

Here ‘‘ ’’ denotes the average over all grid points on the
specific level. Also note that there are three samples of
‘‘errors’’ at each grid point, as calculated by equation (7).
Figure 4 shows the correlation coefficients between vertical
levels. The diagonal structure indicates that the correlation
between two vertical levels can be approximated by f (jz(k1)�
z(k2)j). Assuming the correlation as a function of grid
numbers, i.e., f (jk1 � k2j), for such a nonuniform grid is not
applicable here. Figure 5 shows the correlation as a function
of the distance between two levels. We use a simple function

e
�Dz2

lz
2

, where the vertical length scale lz = 2500 m, to
approximate the vertical correlation. This function fits the
actual NMC correlation results pretty well, as shown in
Figure 5.

Table 3. Model Bias and RMS Error of the Base Run, Calculated Against Each Observation Platforma

Error AIRNOW DC3 MOZ-FN MOZ-NF P3 AIRMAP DC8-In DC8-Li RHODE RONBR

Bias 15.3 16.0 1.8 4.2 9.8 13.8 �8.4 �3.8 3.7 9.4
RMS 26.3 22.8 20.7 15.3 18.3 19.9 18.6 17.9 13.4 24.3

aUnit is ppbv. See Table 1 for descriptions of the observations.

Figure 10. Predicted surface ozone concentrations at 2000 UT (1600 EDT) for (left) the base case and
(right) case 9. AIRNOW and AIRMAP measurements are also indicated by the color-coded circles
(slightly larger and white-outlined circles for AIRMAP).
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Figure 11. AIRMAP ozone observations and corresponding model predictions by the base case and
case 9. Observations have been reduced according to model time resolution. Observations before 1600 UT
are not assimilated.

Figure 12. Ozone profiles by two ozonesondes (RHODE and RONBR) and corresponding model
predictions by the base case and case 9. Observations have been reduced according to model resolutions,
both in time and space.
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[19] Similarly, the correlation coefficients in two horizon-
tal directions are calculated and plotted in Figure 6 as a
function of the distances. It is seen that there is little
difference in the two horizontal directions. They can be

approximated by e�
Dh1:5

lh
1:5

, where lh = 270 km.

4.2. Background Error Variance Through
Observational Method

[20] Another approach to calculate the background
error covariance matrices is the observational method
(Hollingworth-Lönnberg method) [Hollingsworth and
Lönnberg, 1986; Daley, 1991]. It provides a more reliable
estimate of the background error variance, as well as the
ratio between the observation error variance and back-
ground error variance, which directly determines the
weighting between the two terms in equation (3). However
as the name implies, this method requires a substantially
dense observational network.
[21] As shown in Figure 1, the dense coverage over the

domain by the AIRNOW surface stations makes it suitable
for the observational method. Using hourly observations
during 20–22 July 2004 at each station, the correlation
between the observational increment y � h(c) at two stations
i, j is calculated as

Rij ¼
y i � hi cð Þð Þ y j � h j cð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y i � hi cð Þð Þ2 � y j � h j cð Þð Þ2

q ð10Þ

where y is the observation and h(c) is the model prediction
before assimilation. ‘‘ ’’ represents the average over time.

Rij are calculated between any two stations and the biases
are removed such that Rij is in the range of [�1, 1].
[22] Figure 7 shows Rij as a function of horizontal

distance between station pairs. The zero intercept of the
curve Rz = limDh!0 R(Dh) � 0.6 measures the spatially
correlated part (background error) of the total error, i.e.,

Rz ¼
E2
B

E2
B þ E2

O

ð11Þ

Using this and EO = 8 ppbv, EB is estimated to be 10 ppbv.
Note that R(Dh)/Rz is an estimate of the horizontal
background error correlation at ground level. The pre-
viously estimated horizontal correlation is also plotted in
Figure 7 after being adjusted by Rz. They agree reasonably
well. Compared with the correlation results from the NMC
approach using all the levels, the correlation distance at
ground level using the observational approach is slightly
smaller.

4.3. Inverse of Background Error Covariance Using
SVD Method

[23] The realistic treatment of background errors raises
numerical issues, such as how to invert B. Using the
property of Kronecker product [Horn and Johnson,
1991], B�1 can be written as

B�1 ¼ X � Y � Z � Cð Þ�1¼ X�1 � Y�1 � Z�1 � C�1 ð12Þ

Although it is straightforward to directly invert X, Y, Z, and
C as all the matrices have full rank and small sizes, it is error-
prone to compute the matrix inverse for ill-conditioned
matrices. For instance, [Sun and Crook, 2001] calculated the
matrix inverse using singular value decomposition (SVD)
and found the correlation length scale cannot be greater than
four times the grid spacing in order to avoid the ill-
conditioning problem. Here we propose to use SVD on the
matrices, but truncate the singular vectors that are associated
with small singular values to approximate the original
matrices.
[24] Using SVD, a general m � n matrix A can be written

as

A ¼ USVT ð13Þ

where S is an m� n matrix which is zero except for its
min(m, n) diagonal elements, U is an m � m orthogonal
matrix, and V is an n � n orthogonal matrix. For the

Table 4. Descriptions of Data Assimilation Testsa

Case Assimilated Observations Time Number

1 AIRNOW 1300–2400 UT,
hourly

2075

2 DC3 1852–2356 UT 412
3 MOZ-FN, MOZ-NF 1947–2007 UT,

2238–2252 UT
38

4 P3 1412–2207 UT 208
5 AIRMAP 1615–2400 UT 128
6 DC8-In 1416–2207 UT 138
7 DC8-Li 1429–2137 UT 465
8 RHODE, RONBR 1810–1822 UT,

1900–1921 UT
35

9 All above 1300–2400 UT 3499
aListed observation time and number are after averaging the measure-

ments inside each grid cell. Such averaging is extended to include the time
dimension, which has a resolution of 15 min. See Table 1 for descriptions of
the observations.

Table 5. RMS Error Changes of Model Predictions Against Each Observation Platform, Over the Base Case After Assimilationa

Case AIRNOW DC3 MOZ-FN MOZ-NF P3 AIRMAP DC8-In DC8-Li RHODE RONBR

1 (�12.9) �6.0 �4.0 4.0 �5.8 �6.7 �0.8 �0.7 �3.6 �3.3
2 �0.9 (�8.0) �6.0 �2.4 �4.2 �3.8 �0.5 0.1 �2.3 �0.2
3 �0.3 �2.4 (�7.4) (�4.9) �1.2 0.0 �0.2 �0.2 �0.2 �0.1
4 �1.3 �5.9 �4.4 �3.0 (�7.4) �2.9 �0.3 �0.4 �3.5 0.0
5 �0.6 �0.8 0.1 0.0 �0.9 (�9.5) �0.5 0.0 �0.5 �1.1
6 �0.3 �0.7 �1.2 �0.1 �1.0 �3.3 (�6.1) �1.4 �1.0 �0.6
7 �1.4 �2.3 �4.6 �2.8 �1.8 �0.2 �3.2 (�6.9) �1.6 �0.3
8 �0.2 �0.2 �0.4 0.1 �0.2 0.0 �0.4 �0.2 (�6.4) (�12.9)
9 �12.2 �7.0 �8.5 4.0 �7.3 �8.8 �6.9 �6.7 �8.5 �10.0
aParentheses indicate observations of the platform have been assimilated in the data assimilation experiment. Unit is ppbv. See Table 4 for descriptions of

the data assimilation tests.
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symmetric matrices X, Y, Z, and C, equation (13) can be
simplified as

A ¼ USUT ð14Þ

The diagonal elements of S are the singular values of S.
The singular values si are positive for positive definite
matrices. They are arranged in the descending order, i.e., s1
� s2� � �sn > 0. The columns of U are the corresponding
singular vectors. Then it is easy to get

A�1 ¼ US�1UT ð15Þ

where the only nonzero elements of S�1 are the diagonal
ones and they are 1

s1
, 1
s2
, � � �, 2

sn
. The small singular values are

the sources of instability and they make the matrix-vector
multiplication A�1b extremely sensitive to the perturbation
of the vector b. It has been proven that Ap

+b is the minimum
norm solution that minimizes kApx � bk, which is called
truncated singular value decomposition (TSVD) regulariza-
tion [Gwak and Masada, 2004; Xu, 1998; Hansen et al.,
1992]. p denotes the rank of thematrixAp that approximatesA.

Ap ¼ USpU
T ð16Þ

Aþ
p ¼ USþ

p U
T ð17Þ

where Sp is the diagonal matrix after setting sp+1, � � �, sn to
zero.S+ is a diagonal matrix, with the diagonal elements as 1

s1
,

Table 6. Model Bias and RMS Error for Case 9, Calculated Against Each Observation Platforma

Error AIRNOW DC3 MOZ-FN MOZ-NF P3 AIRMAP DC8-In DC8-Li RHODE RONBR

Bias 0.7 �5.1 �5.3 �14.5 �4.8 �4.8 �4.5 �4.4 �4.0 4.1
RMS 14.1 15.8 12.2 19.3 11.0 11.1 11.7 11.2 4.9 14.3

aUnit is ppbv. See Table 1 for descriptions of the observations.

Figure 13. (top) DC-8 lidar ozone observations and the corresponding model predictions by (middle)
the base case and (bottom) case 9. Lidar observations have been reduced according to model resolutions,
both in time and space.
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1
s2
, � � �, 1

sp
, 0, � � �, 0. With TSVD regularization, B�1 is thus

approximated by

B�1 ¼ Xþ
p � Yþ

p � Zþ
p � Cþ

p ð18Þ

where p may be different for matrices X, Y, and Z. Here p is
picked to have the final matrix condition number smaller than
100. Table 2 shows the maximum and minimum singular
values and condition numbers of X, Y, and Z, as well as the
truncation rank p used in TSVD regularization. It demonstrates
the severely ill-conditioning of Z. Without regularization, the
direct inverse of Z results in very large background term in
equation (3) and that makes the minimization process stop.
Figure 8 shows Zq, as well as Z, which is used to approximate
the vertical correlation obtained through the NMC approach,
shown in Figure 4. The maximum change of the correlation
coefficients represented by elements of Z and Zp is found to be
0.0073. This implies that such truncation does not change the
represented correlation structure, but only removes the noises
from the correlation matrix.
[25] The Kronecker products in equation (18) are imple-

mented by applying the Xp
+, Yp

+, Zp
+, and Cp

+ subsequently in
three different directions, and at each grid point between
different species. In the following applications, we take square
root of Xp

+, Yp
+, and Zp

+ matrices, apply them in three directions
before applying Cp

+, and then use the square root matrices in a
reverse order.

5. Data Assimilation Results

5.1. Base Case Run

[26] The STEM-predicted ozone distribution without
assimilation provides the base conditions for the analysis.
The initial and boundary conditions were provided from a
STEM simulation at the same resolution, but using a large
continental domain [Tang et al., 2007]. The wind fields at
1600 UT and 2000 UT are shown at two different heights,
990 m and 3553 m, in Figure 9. There is not much
difference between 1600 UT to 2000 UT, but the flow

fields at the two heights vary significantly. Over land the
wind was mainly westerly. The winds were light in the New
England area at low altitudes, which makes the ozone
production to be largely determined by the local emission.
[27] Table 3 lists the performance of the forward model

predictions as evaluated by the observations. The root mean
square (RMS) errors range from 13.4 to 26.3 ppbv, with a
positive bias for the predictions of surface ozone. This was a
general finding of seven different CTMs used to forecast
surface ozone during ICARTT [McKeen et al., 2005],
including the STEM model. This is shown by the 15.3 ppbv
positive bias in the predictions at the AIRNOW surface
sites. An over prediction was consistently found in the base
run for ozone measurements below 3 km (from aircraft and
ozonesondes). In contrast, ozone predictions above 4 km
were biased low. These values are significantly influenced

Figure 14. DC-8 in situ ozone observations and the corresponding model predictions by the base case
and case 9. Observations have been reduced according to model resolutions, both in time and space.

Figure 15. P3 ozone observations and the corresponding
model predictions by the base case and case 9. Observations
have been reduced according to model resolutions, both in
time and space.
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by the boundary conditions from the global model used by
the STEM as discussed by [Tang et al., 2007]. These
differences will be discussed in more detail later. The bias
and RMS values are smaller for the P3 and DC-8 aircraft
observation. The effect of model resolution is most pro-
nounced for the surface predictions and not so pronounced
for the other data sets. Forward model predictions using a
12 km grid reduced the predicted mean ozone levels by
3 ppbv for the P3 observations below 1 km.
[28] The standard deviation of the combined background

and observational errors is

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
B þ E2

O

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102 þ 82

p
� 12:8ppbv: ð19Þ

This is an estimate of the expected model performance. This
value can be reduced either by improving the model
performance at the current resolution, thus decreasing EB,
or by increasing the model resolution, thus decreasing the
representative error, the major component of EO. It should
be noted that the previously obtained ratio between EB and
EO cannot be directly applied to other models, which
probably have different EB values. For the same model,
the change of resolution will affect both EB and EO.
[29] Comparisons between the base case model predic-

tions and the observations are shown in Figures 10–12. In
general the ozone predictions show high positive biases
below �3 km and high negative bias above �4 km. The
analyses after assimilating all observations are also shown.
These results will be discussed in section 5.3.

Figure 16. Relative changes of initial O3 concentration. Averaged values are shown in top, west, and
south views. Two isosurfaces of the initial O3 concentration changes (red indicates 20% increase; blue
indicates 20% decrease) are shown in the 3-D plots. The relative changes are based on case 9 over the
base case and normalized by average concentrations on each level.
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5.2. Information Content

[30] Eight different data assimilation tests were performed
to assess the impact on the assimilation results of the
different observation sets. This is an important issue in the
design of observing systems to support chemical data
assimilation. Basic questions that arise include: do we get
a bigger impact by increasing spatial or temporal samples?
or by adding information near or above the surface?
[31] The cases are listed in Table 4. Table 5 shows the

impact on the predictions after assimilation. For the major-
ity of the cases, assimilating observations improves the
model predictions as determined by the withheld observa-
tions, and quantified by the reduced RMS errors (shown as
negative RMS error changes in Table 5). Exceptions are the
increases in RMS errors for the MOZ-NF (MOZAIC flight,
New York–Frankfurt) predictions for case 1 and case 8, the
MOZ-FN (MOZAIC flight, Frankfurt–New York) predic-
tions after assimilating AIRMAP observations (case 5), and
DC-8 lidar predictions after assimilating DC3 observations
(case 2). Among them, the only significant RMS error
increase (>0.1 ppbv) is on MOZ-NF after assimilating
AIRNOW observations (case 1). It is likely that the
MOZAIC flight sampled more polluted air than the
60 km � 60 km grid cell average. On the other hand,
the base case mostly overestimates the ground ozone
observations, as discussed in section 5.1. The small RMS
errors are probably due to the combinations of these two
factors and they are likely to go up if the overprediction at
the ground level is mitigated.
[32] It is seen that assimilating AIRNOW observations

(case 1) helps to reduce the model RMS errors against
AIRMAP, DC3, and P3 by 6.7, 6.0, and 5.8 ppbv respec-
tively. Observations by DC-8 lidar, P3, and DC3 also show
significant positive effects on model results when assimi-
lated in cases 7, 4, and 2. Cases 5 and 8 have the smallest
effect to improve the model results due to the limited spatial

coverage of the AIRMAP sites and the ozonesonde loca-
tions. Case 6 shows more improvement than case 4 as the
DC-8 covers a larger area within the domain.
[33] The observation number after performing averaging

inside the four-dimensional grid cells is a good indication of
the information content of the observations for each plat-
form. As the observation numbers of AIRNOW, DC-8 lidar,
DC3 lidar, and P3 listed in Table 4 are larger than the
number of observations from the other platforms, they
provide greater impact in improving the model predictions
when assimilated. Although the observation number for
AIRMAP (128) is close to that of P3 (208), the effect of
AIRMAP is smaller because of the limited spatial coverage
(both horizontally and vertically). Note that the information
content also depends on the model resolution. For instance,
the DC3 lidar generated a vertical profile every 10 s, which
has 85 data points with a vertical resolution of 90 m. Such
information cannot be fully utilized with a 60 km grid. It
will bring much more information to a smaller domain with
higher spatial and temporal resolutions.

5.3. Final Analysis

[34] A final analysis is obtained after all the observations
are assimilated. It is listed as case 9 in Tables 4 and 5. Table 5
shows that the observations from all platforms can be
successfully assimilated simultaneously, and that the fit
between predictions and observations is generally better than
when the observations from each individual platform are
assimilated separately. The exception is again for MOZ-NF,
for which the RMS error increases by 4.0 ppbv. The reason is
discussed in section 5.1. The model biases and RMS errors of
the final analysis are listed in Table 6. Except for MOZ-FN,
the largest model bias is �5.3 ppbv for MOZ-FC, and the
largest model RMS error is 15.8 ppbv for DC3 lidar,
which is comparable to the expected model performance,
E � 12.8 ppbv, calculated in equation (19).

Figure 17. Domain-averaged vertical profiles (with stan-
dard deviation) of the ozone observations and the
corresponding predictions before (base case) and after
assimilation of all observations (case 9).

Figure 18. Quantile-quantile plots of the ozone observa-
tions (using all data) versus the corresponding predictions,
for the base case and case 9. The quantile increment is 2%;
that is, quantiles of 2%, 4%, 96%, 98% are shown.
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[35] The comparisons between predictions of case 9
and the base case, as well as observations are shown in
Figures 10–12. Figure 10 shows predicted surface ozone at
2000 UT by the base case and the final analysis, along with
observations by AIRNOW and AIRMAP. While the base
case overpredicted ozone at many locations, results from the
final analysis match most observations well. There is little
change in predictions where there are no measurements such
as the southeast corner of the domain. The time series of
ozone concentrations at AIRMAP locations in Figure 11
show significant improvement in the final analysis at two
locations (AIRMAPCS and AIRMAPTF), but has little
change over the base case for Appledore Island (AIRMAPIS)
location. At Mount Washington Observatory location
(AIRMAPMWO), the ozone predictions change from over-
prediction for the base case to ‘‘underprediction’’ for the
final analysis. The ‘‘underprediction’’ is probably due to
bias of the measurements. According to the notes provided
with the data, the ozone measurements were strongly
impacted by exhaust from a generator on site and the
cog railway which runs from late April/early May to late
October/early November.
[36] Ozone profiles by the two ozonesondes (RHODE

and RONBR), and corresponding model predictions by the
base case and case 9 are shown in Figure 12. The profiles
clearly indicate that the model overpredicted ozone below
3000 m, but underpredicted ozone above the height for the
base case run. Ozone at the high altitudes is mainly due to
long-range transport. For regional CTMs, predictions are
greatly affected by the boundary conditions [Tang et al.,
2007]. Ozone at the low altitudes is mostly impacted by the
local emissions. Although both boundary conditions and
emission inventories are kept the same as the base case, the
adjustment of initial ozone concentration is still able to
emulate such effects in a short period. Results of the final
analysis after assimilating the ozone observations show that
both the underpredictions at high altitudes and overpredic-
tions at low altitudes are largely remedied.
[37] Figure 13 shows the ‘‘curtain plots’’ (continuous

profiles) of ozone measured by a lidar on board DC-8,
along with their model counterparts for the base case and
case 9. The base case again overpredicts observations by

DC-8 lidar under 3000 m and underpredicts ozone at higher
altitudes. After the data assimilation, significant improve-
ments are found in all regions.
[38] Figures 14 and 15 show the in situ ozone measure-

ments by DC-8 and P3, respectively. Part of the DC-8 flight
is out of the domain as shown in Figure 2. In the first part of
the DC-8 flight, the base case overpredicts ozone above
4000 m and underpredicts below 4000 m. The final analysis
is effectively improved in both regions. For the second part
of the DC-8 flight, significant improvement after assimila-
tion is seen during 2030–2130 UT, when the flight is above
4000 m. There is little change made by the data assimilation
before 2030 UT and after 2130 UT. Figure 2 shows that the
beginning of the second part of the DC-8 flight is at the west
boundary of the current domain, which is a in-flow bound-
ary, indicated by the wind fields shown in Figure 9. With
the same in-flow boundary conditions used for both the base
case and case 9, the ozone predictions cannot be improved
by only adjusting the initial conditions. On the other hand,
there is a good agreement between the base case predictions
and DC-8 In Situ measurements after 2130 UT. The final
analysis still sees improvement after 2200 UT. Predictions
on the P3 flight measurements by the final analysis
improves significantly over the base case, as demonstrated
by Figure 15. However several high ozone values
(>90 ppbv) were observed, but are not present in model
results of case 9.
[39] The assimilation of all the various ozone observa-

tions allows us to demonstrate the impact of data assimila-
tion on the generation of a reanalysis field. This is similar to
meteorological reanalysis where an optimal field consistent
with observations is generated. The relative changes of the
initial ozone concentrations after assimilating the observa-
tions of multiple platforms are shown in Figure 16.
Decreases of initial ozone are seen below 2000 m, and over
most of the land area in the domain. This is consistent with a
separate analysis of the STEM prediction with ICARTT
observations which indicates that the NOx and some VOC
(volatile organic compounds) emissions are overestimated
with the NEI 2001 inventory [Mena-Carrasco et al., 2007].
There is a region between 4000–8000 m, and close to the
west boundary, that sees increases of initial ozone concen-

Table 7. Average Model Prediction Changes After Assimilating Ozone Measurements From All Platforms (Case 9 Over the Base Case),

Normalized by Average Concentrations on Each Level Before Taking Domain Averagea

Time O3 NO NO2 CO HCHO ACET ARO1 ARO2 PAN PAN2 OH

1600 UT �0.061 0.136 0.029 0.000 0.024 0.000 �0.001 �0.001 �0.027 �0.036 0.005
2000 UT �0.045 0.071 0.032 0.000 0.018 0.000 �0.001 0.001 �0.027 �0.049 0.005
2400 UT �0.040 0.029 0.022 0.000 0.014 0.000 �0.002 �0.002 �0.028 �0.053 0.012

aACET, acetone; ARO1, aromatics with kOH < 2 � 104 ppm�1min�1; ARO2, aromatics with kOH > 2 � 104 ppm�1min�1; PAN, peroxy acetyl nitrate;
PAN2, PPN (peroxypropionyl nitrate) and other higher alkyl PAN analogues.

Table 8. RMS Mean of Model Prediction Changes After Assimilating Ozone Measurements From All Platforms (Case 9 Over the Base

Case), Normalized by Average Concentrations on Each Level Before Taking Domain RMS

Time O3 NO NO2 CO HCHO ACET ARO1 ARO2 PAN PAN2 OH

1600 UT 0.168 0.788 0.101 0.000 0.059 0.003 0.033 0.111 0.075 0.093 0.044
2000 UT 0.129 0.616 0.138 0.001 0.045 0.005 0.101 0.210 0.080 0.121 0.042
2400 UT 0.114 0.268 0.108 0.001 0.036 0.004 0.057 0.109 0.078 0.124 0.050
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trations. This suggests that the boundary conditions require
adjustment (which can be added to the 4D-Var control
variables).
[40] Figure 17 shows the domain-averaged vertical pro-

files (with standard deviation) constructed using the obser-
vations and the corresponding predictions for case 9 and the
base case. It clearly shows that the model biases both below
and above 3000 m are substantially reduced for case 9. The
predicted values for case 9, now show a negative bias at low
to midaltitudes and a positive bias at high altitudes.
Assessed with all the observations throughout the boundary
layer and mid troposphere, the model bias is reduced from
11.3 ppbv for the base case to �1.5 ppbv for case 9. A
reduction of 10.3 ppbv in RMS error is also seen. The
model biases and RMS errors of the final analysis against
the individual platforms are listed in Table 6.
[41] Figure 18 gives the quantile-quantile (q-q) plots of

the ozone observations versus the corresponding predic-
tions, for the base case and case 9. Each point in a quantile-
quantile plot shows the values from two data sets that has
the same quantile, i.e., the fraction of data points that fall
below the given value. The q-q plot of the base case clearly

shows the predictions are biased high overall. After assim-
ilation, case 9 generates a predicted ozone field that has a
very similar population distribution as the observations. The
q-q plot of case 9 also indicates that the model has difficulty
to generate low ozone concentrations (<20 ppbv) in the data
assimilation time period. This is largely due to the coarse
model resolution.
[42] As the chemical species are closely connected

through various photochemical reactions, the adjustment
of initial ozone concentrations will affect the predictions
of other species. The impact of the assimilation of ozone
observations on the predictions of selected chemical species
are listed in Tables 7–9. The largest impacts are found for
NO where the RMS mean of NO prediction changes are
78.8% at 1600 UT (1200 EDT), and then decreases to
26.8% at 2400 UT (2000 EDT). Figure 19 shows the
isosurfaces of 100% increase of predicted NO concentration
at 1600 UT. It is the data-rich region that is more affected by
assimilation than the other areas. This highly impacted
region extends to �3000 m in height. Note that NO
predictions are increased over almost the whole domain,
which is also indicated by the large average change in

Table 9. Maximum Model Prediction Change After Assimilating Ozone Measurements From All Platforms (Case 9 Over the Base Case),

Normalized by Average Concentrations on Each Levela

Time O3 NO NO2 CO HCHO ACET ARO1 ARO2 PAN PAN2 OH

1600 UT �0.827 24.899 �2.992 0.006 0.371 �0.073 1.693 7.655 �0.950 �0.936 �0.696
2000 UT �0.682 21.948 5.105 0.015 0.256 �0.129 4.070 10.170 �1.394 �1.483 �0.749
2400 UT �0.613 8.736 3.099 0.011 0.244 �0.113 1.757 3.756 �1.172 �1.219 �0.504

aMaximum change is based on the magnitude of the normalized changes.

Figure 19. Relative changes of predicted (left) NO and (right) OH concentrations at 1600 UT.
Isosurfaces of 100% increase for NO, 5% increase (red) and 5% decrease (blue) for OH are shown. The
relative changes are based on case 9 over the base case and normalized by average concentrations on each
level.
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Table 7. Figure 19 also shows the isosurfaces of ±5%
change in OH at 1600 UT, and displays a different distri-
bution than that of NO. Although ozone is often highly
correlated with CO, the changes in initial ozone concen-
trations had little effect on the CO predictions, with the
maximum change as 1.1%, reflecting that the feedbacks
operate at a much longer timescale than studied here.
[43] In addition to the observations that are assimilated in

case 9, there are more independent ozone measurements
during the time period. Onboard the NOAA research vessel
Ronald H. Brown (Ron Brown), both Chemiluminescence
and UV absorbance instruments were used to sample ozone
at �15 meters above waterline. The two data sets are
consistent with each other, but the uncertainty of UV
absorbance ozone measurements (+/�(2% + 1 ppbv)) is
smaller than that of chemiluminescence data (+/�(2% +
3 ppbv)). The ship positions between 1200UTon 20–22 July
2004 are given in Figure 2. Figure 20 shows the UV
absorbance ozone measurements and the corresponding
model predictions by the base case and case 9. In the data
assimilation time window, the UV absorbance ozone meas-
urements serve as another validation data set. It is clearly
seen that after assimilation the model predictions for the
Ron Brown better match the observations. More impor-
tantly, the positive effect continues beyond the data assimi-
lation time window (even out to 48 hours). This demonstrates
the potential of improving air quality forecasts by chemical
data assimilation. However improved ozone forecasts will
require the assimilation of precursor species, and the
inclusion of emissions and boundary conditions as control
variables. This is a subject of a future paper.

6. Summary and Discussion

[44] The ICARTT experiments produced comprehensive
observation data sets and intense modeling applications
upon which to study important aspects of data assimilation.

A key element is the characterization of errors. The model
error correlation was constructed using the NMC approach.
It is implemented into a 4D-Var regional chemical data
assimilation system with a truncated SVD regularization
method. The observational (Hollingworth-Lönnberg)method
was used to calculate theweighting between observations and
the model background in 4D-Var. It should be noted that the
increase of the computational time is minimal using the
current approach, compared to using a diagonal matrix for
the background error covariance. The weighting between the
model and observations in determining the final optimal
analysis depends on both the background and observational
error covariance matrices, which were objectively approxi-
mated in the current application.
[45] Ozone observations by different platforms during the

ICARTT field experiment were assimilated into the regional
CTM. It was found with little exception that assimilating
observations from each individual platform improved the
model predictions against the withheld observations. The
information content of the observations depends on
the model resolution and it can be approximated by the
number of four-dimensional (in space and time) grid cells
that the observations spread over. A final analysis where all
the observations by the different platforms were simulta-
neously assimilated, resulted in a reduction in bias to
�1.5 ppbv from 11.3 ppbv for the base case without
assimilation. A reduction of 10.3 ppbv in RMS error was
also seen. In addition, the potential of improving air quality
forecasts with chemical data assimilation was demonstrated
by a case where the near surface ozone predictions better
match observations out to 48 hours after assimilation.
[46] In the current data assimilation experiments, only

initial ozone concentrations were adjusted. This limits the
effect of the data assimilation (especially for forecasts) as
model predictions at some locations are more affected by
the boundary conditions or emission inventories. Adjust-
ing initial concentrations of other species will probably

Figure 20. UV absorbance ozone measurements on NOAA research vessel Ronald H. Brown and
corresponding model predictions by (left) the base case and (right) case 9. Measurement uncertainties
(+/�(2% +1 ppbv)) are shown as error bars. Model prediction uncertainties are given as (+/�10 ppbv),
indicted by a band width of 20 ppbv.
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help to improve the model predictions and air quality
forecasts. In addition, the benefit of assimilating satellite
observations and measurements of additional species need
to be exploited. These issues will be addressed in future
papers.
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References
Byrd, R., P. Lu, and J. Nocedal (1995), A limited memory algorithm for
bound constrained optimization, SIAM J. Sci. Stat. Comput., 16(5),
1190–1208.

Carmichael, G. R., D. N. Daescu, A. Sandu, and T. Chai (2003), Computa-
tional aspects of chemical data assimilation into atmospheric models, in
Computational Science—ICCS 2003, Lecture Notes in Computer Science,
IV, pp. 269–278, Springer, Berlin.

Carter, W. (2000), Documentation of the SAPRC-99 chemical mechanism
for VOC reactivity assessment, Tech. Rep. 92-329, Calif. Air Resour.
Board Contract, Sacramento.

Chai, T., G. R. Carmichael, A. Sandu, Y. Tang, and D. N. Daescu (2006),
Chemical data assimilation of transport and chemical evolution over the
Pacific (TRACE-P) aircraft measurements, J. Geophys. Res., 111,
D02301, doi:10.1029/2005JD005883.

Courtier, P. (1997), Dual formulation of four-dimensional variational assim-
ilation, Q. J. R. Meteorol. Soc., 123(544B), 2449–2462.

Daescu, D. N., and G. R. Carmichael (2003), An adjoint sensitivity method
for the adaptive location of the observations in air quality modeling,
J. Atmos. Sci., 60, 434–449.

Daescu, D. N., A. Sandu, and G. R. Carmichael (2003), Direct and adjoint
sensitivity analysis of chemical kinetic systems with KPP: II—Numerical
validation and applications, Atmos. Environ., 37, 5097–5114.

Daley, R. (1991), Atmospheric Data Analysis, 457 pp., Cambridge Univ.
Press, New York.

Elbern, H., and H. Schmidt (1999), A 4D-Var chemistry data assimilation
scheme for Eulerian chemistry transport modeling, J. Geophys. Res.,
104(D15), 18,583–18,598.

Elbern, H., and H. Schmidt (2001), Ozone episode analysis by four-dimen-
sional variational chemistry data assimilation, J. Geophys. Res., 106(D4),
3569–3590.

Elbern, H., H. Schmidt, and A. Ebel (1997), Variational data assimilation
for tropospheric chemistry modeling, J. Geophys. Res., 102(D13),
15,967–15,985.

Elbern, H., H. Schmidt, O. Talagrand, and A. Ebel (2000), 4D-variational
data assimilation with an adjoint air quality model for emission analysis,
Environ. Modeling Software, 15, 539–548.

Fisher,M., andD. J. Lary (1995), Lagrangian four-dimensional variational data
assimilation of chemical species, Q. J. R. Meteorol. Soc., 121, 1681–1704.

Gao, J., M. Xue, K. Brewster, and K. K. Droegemeier (2004), A three-
dimensional variational data analysis method with recursive filter for
doppler radars, J. Atmos. Oceanic Technol., 21(3), 457–469.

Grell, G. A., J. Dudhia, and D. R. Stauffer (1994), A description of the fifth-
generation Penn State/NCAR mesoscale model (MM5), Tech. Rep.,
NCAR/TN � 398 + STR, Natl. Cent. for Atmos. Res., Boulder, Colo.

Gwak, K.-W., and G. Y. Masada (2004), Regularization embedded non-
linear control designs for input-constrained and ill-conditioned thermal
system, Trans. ASME, 126(3), 574–582, doi:10.1115/1.1789973.

Hansen, P. C., T. Sekii, and H. Shibahashi (1992), The modified truncated
SVD method for regularization in general-form, SIAM J. Sci. Stat. Com-
put., 13(5), 1142–1150.

Hoelzemann, J. J., H. Elbern, and A. Ebel (2001), SAS and 4D-var data
assimilation for chemical state analysis by urban and rural observation
sites, Phys. Chem. Earth, Part B, 26(10), 807–812.
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